Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jiu-Hui Liu,* Chun-Fang Huang and Mei Li

College of Chemistry and Chemical Engineering, Jinggangshan University, Jian, Jiangxi 343009, People's Republic of China

Correspondence e-mail: jhliu@jgsu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.011 Å R factor = 0.023 wR factor = 0.075 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[(μ_3 -isonicotinato- $\kappa^3 N$:O:O')(μ_4 -tetraoxidochromato- $\kappa^5 O$:O':O',O'':O'')erbium(III)]

The title compound, $[Er{CrO_4}(C_6H_4NO_2)]_n$ or $[CrEr(C_6H_4-NO_2)O_4]_n$, obtained by a hydrothermal reaction, is a threedimentional polymer consisting of inorganic layers of Er^{III} ions and $[CrO_4]^{2-}$ anions pillared by organic isonicotinate (IN) ligands. Each Er^{III} ion is eight-coordinated by one N atom from one IN ligand, two carboxylate O atoms from two IN ligands and five O atoms from four $[CrO_4]^{2-}$ anions. The inorganic layer consists of $[Er(CrO_4)]_n$ chains running along the *b* direction, linked together in the *a* direction. Each $[CrO_4]^{2-}$ anion in the structure binds four Er^{III} ions in a μ_4 pentadentate coordination mode.

Comment

The design of coordination polymers has become an active research area (Hill, 1998; Serre *et al.*, 2002) because of their potential application as functional solid materials (Rowsell & Yaghi, 2006; Piguet *et al.*, 1997; Wu *et al.*, 2003). Among the large number of reported structures, the rational synthesis of organic–inorganic hybrid compounds containing chiral or double helical arrays is of particular interest (Lu *et al.*, 2002; Evans *et al.*, 2001). Here, we report the synthesis and crystal structure of the title compound, $[Er(IN)CrO_4]_n$, (I) (IN is isonicotinate).

Fig. 1 shows an ellipsoid plot of the erbium coordination environment. Each Er^{III} ion is eight-coordinated by one N atom from one IN ligand, two carboxylate O atoms from two IN ligands and five O atoms from four $[\text{CrO}_4]^{2-}$ anions (Fig. 1). Therefore, the coordination environment around the Er^{III} ion contains three IN and four chromate ions.

© 2007 International Union of Crystallography All rights reserved Received 7 March 2007 Accepted 16 March 2007

Figure 1

The asymmetric unit of (I), expanded to show the complete environment of Er, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z; (ii) $-x + \frac{1}{2}, -y, z + \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$.]

Figure 2 [001] view of the inorganic layered structure of (I).

The Er-O distances are in the range 2.277 (5)–2.532 (5)Å [average 2.343 (5) Å], shorter than those in similar structures such as $[Ln(INO)(H_2O)(SO_4)]_n$ (Ln = La, Ce, Pr; INO is isonicotinate-N-oxide; He et al., 2005), where the Ln-O distances span 2.449 (3)-2.691 (3), 2.423 (2)-2.671 (2) and 2.408(4)-2.648(4) Å, respectively. The O-Er-O bond angles range from 76.7 (2) to $152.45 (19)^{\circ}$.

The three-dimensional crystal structure of (I) comprises $[Er(CrO_4)]_n$ chains running along b, then linked together in the *a* direction, to form the inorganic layers shown in Fig. 2. These layers, in turn, are pillared by the organic IN ligand into a tightly bound three-dimensional structure (Fig. 3).

Within each chain, both the Er^{III} cations and the $[CrO_4]^{2-}$ anions are disposed in a zigzag-like arrangement, where each pair of Er ions is bridged by two μ -O bridges of two $[CrO_4]^{2-1}$ anions to form an [Er₂O₂] rhombic unit. These units form a chain by sharing their two Er^{III} vertices. There is an Er...Er separation of 3.935 (2) Å and an Er...Cr separation of 3.140 (2) Å for neighboring cations along each $[Er(CrO_4)]_n$

A polyhedral representation of the three-dimensional structure of (I), at right angles to that in Fig. 2, showing the inorganic layers in projection (as vertical columns), horizontally linked by the organic ligands. Colour code: red, [CrO₄] unit; green, [ErNO₇] unit.

chain. Each $[CrO_4]^{2-}$ anion provides two μ -O atoms (O3 and O4) to bridge three Er^{III} ions of a triangle in the chain. The fourth O atom of the $[CrO_4]^{2-}$ anion is non-coordinated. As a result, each $[CrO_4]^{2-}$ anion in the structure binds four Er^{III} ions in a μ_4 -pentadentate coordination mode. The Cr-O bond distances are in the range 1.589 (6)-1.705 (5) Å, similar to those found in the related $[{Cu(bpy)_2}_3(\mu-CrO_4)](ClO_4)_4$. H₂O (bpy is 2,2'-bipyridine; Yin et al., 2002).

Experimental

Siemens SMART CCD

 $R[F^2 > 2\sigma(F^2)] = 0.023$

Absorption correction: multi-scan

(SADABS; Sheldrick, 1996)

H-atom parameters constrained

 $T_{\rm min} = 0.52, \ T_{\rm max} = 0.73$

diffractometer

Refinement

S = 1.01

 $wR(F^2) = 0.075$

2010 reflections

137 parameters

The pH of a mixture of K₂Cr₂O₇ (0.34 mmol), HIN (0.50 mmol), Er₂O₃ (0.25 mmol) and deionized water (13 ml) was adjusted to 2.0 by the addition of HCl solution (4 M) whilst stirring and the resulting mixture was then heated at 423 K for 3 d under autogenous pressure in a sealed 25 ml Teflon-lined stainless steel vessel. Yellow crystals were isolated after the reaction solution was cooled (yield 51%).

Crystal data	
$\begin{bmatrix} \text{CrEr}(\text{C}_{6}\text{H}_{4}\text{NO}_{2})\text{O}_{4} \end{bmatrix} \\ M_{r} = 405.36 \\ \text{Orthorhombic, } P_{2_{1}2_{1}2_{1}} \\ a = 6.636 \text{ (3) } \text{\AA} \\ b = 6.980 \text{ (3) } \text{\AA} \\ c = 18.980 \text{ (8) } \text{\AA} \end{aligned}$	$V = 879.1 (7) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 10.72 \text{ mm}^{-1}$ T = 298 (2) K 0.12 \times 0.05 \times 0.03 mm
Data collection	

6991 measured reflections 2010 independent reflections 1879 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

 $\Delta \rho_{\rm max} = 1.99 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -2.34 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 811 Friedel pairs Flack parameter: 0.001 (19)

Table 1			
Selected	bond	lengths	(Å).

Er-O1	2.277 (5)	Er-O4 ⁱⁱⁱ	2.336 (6)
Er-O5 ⁱ	2.282 (5)	Er-O4	2.362 (6)
Er-O2 ⁱⁱ	2.297 (5)	Er-O3	2.532 (5)
Er-O3 ⁱⁱ	2.315 (5)	Er-N ^{iv}	2.571 (6)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, -z.

All H atoms were positioned geometrically and allowed to ride with C–H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual density peak and deepest hole are located 0.66 Å from C3 and 1.26 Å from O3, respectively.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of Jinggangshan University

References

- Evans, O. R., Ngo, H. L. & Lin, W. (2001). J. Am. Chem. Soc. 123, 10395– 10396.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- He, Z., Gao, E. Q., Wang, Z. M., Yan, C. H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862–874.
- Hill, C. L. (1998). Chem. Rev. 98, 1-387.
- Lu, C. Z., Wu, C. D., Lu, S. F., Liu, J. C., Wu, Q. J., Zhuang, H. H. & Huang, J. S. (2002). Chem. Commun. pp. 152–153.
- Piguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005-2062.
- Rowsell, J. L. C. & Yaghi, O. M. (2006). J. Am. Chem. Soc. 128, 1304–1315.
- Serre, C., Millange, F., Marrot, J. & Férey, G. (2002). Chem. Mater. 14, 2409– 2415.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, German.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1994). SAINT (Version 4.0) and SHELXTL (Version 5). Siemens Energy & Automation Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Version 4.0. Siemens Energy & Automation Inc., Madison, Wisconsin, USA.
- Wu, C. D., Lu, C. Z., Lin, X., Wu, D. M., Lu, S. F., Zhuang, H. H. & Huang, J. S. (2003). J. Am. Chem. Soc. 125, 1284–1285.
- Yin, L. H., Gu, W. H., Cheng, P., Zhang, L. Z., Liao, D. Z., Li, J., Yang, X. L., Fu, X. Q., Yan, S. P. & Jiang, Z. H. (2002). *Eur. J. Inorg. Chem.* pp. 1937– 1940.